Semi-supervised Learning for SVM-KNN

نویسندگان

  • Kunlun Li
  • Xuerong Luo
  • Ming Jin
چکیده

Compared with labeled data, unlabeled data are significantly easier to obtain. Currently, classification of unlabeled data is an open issue. In this paper a novel SVMKNN classification methodology based on Semi-supervised learning is proposed, we consider the problem of using a large number of unlabeled data to boost performance of the classifier when only a small set of labeled examples is available. We use the few labeled data to train a weaker SVM classifier and make use of the boundary vectors to improve the weaker SVM iteratively by introducing KNN. Using KNN classifier doesn’t enlarge the number of training examples only, but also improves the quality of the new training examples which are transformed from the boundary vectors. Experiments on UCI data sets show that the proposed methodology can evidently improve the accuracy of the final SVM classifier by tuning the parameters and can reduce the cost of labeling unlabeled examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Nearest Neighbor Methods For Text Classification

We present new nearest neighbor methods for text classification and an evaluation of these methods against the existing nearest neighbor methods as well as other well-known text classification algorithms. Inspired by the language modeling approach to information retrieval, we show improvements in k-nearest neighbor (kNN) classification by replacing the classical cosine similarity with a KL dive...

متن کامل

Improved Nearest Neighbor Methods For Text Classification With Language Modeling and Harmonic Functions

We present new nearest neighbor methods for text classification and an evaluation of these methods against the existing nearest neighbor methods as well as other well-known text classification algorithms. Inspired by the language modeling approach to information retrieval, we show improvements in k-nearest neighbor (kNN) classification by replacing the classical cosine similarity with a KL dive...

متن کامل

Hybridized KNN and SVM for gene expression data classification

Support vector machine (SVM) is one of the most powerful supervised learning algorithms in gene expression analysis. The samples intermixed in another class or in the overlapped boundary region may cause the decision boundary too complex and may be harmful to improve the precise of SVM. In the present paper, hybridized k-nearest neighbor (KNN) classifiers and SVM (HKNNSVM) is proposed to deal w...

متن کامل

ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS

The k-nearest neighbor (kNN) is one of the simplest classification methods used in machine learning. Since the main component of kNN is a distance metric, kernelization of kNN is possible. In this paper kNN and semi-supervised kNN algorithms are empirically compared on two data sets (the USPS data set and a subset of the Reuters-21578 text categorization corpus). We use a soft version of the kN...

متن کامل

kNN Versus SVM in the Collaborative Filtering Framework

We present experimental results of confronting the k-Nearest Neighbor (kNN) algorithm with Support Vector Machine (SVM) in the collaborative filtering framework using datasets with different properties. While k-Nearest Neighbor is usually used for the collaborative filtering tasks, Support Vector Machine is considered a state-of-the-art classification algorithm. Since collaborative filtering ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010